Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
2.
Front Psychiatry ; 15: 1240502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362028

RESUMO

Introduction: Structural brain connectivity abnormalities have been associated with several psychiatric disorders. Schizophrenia (SCZ) is a chronic disabling disorder associated with accelerated aging and increased risk of dementia, though brain findings in the disorder have rarely been directly compared to those that occur with aging. Methods: We used an automated approach to reconstruct key white matter tracts and assessed tract integrity in five participant groups. We acquired one-hour-long high-directional diffusion MRI data from young control (CON, n =28), bipolar disorder (BPD, n =21), and SCZ (n =22) participants aged 18-30, and healthy elderly (ELD, n =15) and dementia (DEM, n =9) participants. Volume, fractional (FA), radial diffusivity (RD) and axial diffusivity (AD) of seven key white matter tracts (anterior thalamic radiation, ATR; dorsal and ventral cingulum bundle, CBD and CBV; corticospinal tract, CST; and the three superior longitudinal fasciculi: SLF-1, SLF-2 and SLF-3) were analyzed with TRACULA. Group comparisons in tract metrics were performed using multivariate and univariate analyses. Clinical relationships of tract metrics with recent and chronic symptoms were assessed in SCZ and BPD participants. Results: A MANOVA showed group differences in FA (λ=0.5; p=0.0002) and RD (λ=0.35; p<0.0001) across the seven tracts, but no significant differences in tract AD and volume. Post-hoc analyses indicated lower tract FA and higher RD in ELD and DEM groups compared to CON, BPD and SCZ groups. Lower FA and higher RD in SCZ compared to CON did not meet statistical significance. In SCZ participants, a significant negative correlation was found between chronic psychosis severity and FA in the SLF-1 (r= -0.45; p=0.035), SLF-2 (r= -0.49; p=0.02) and SLF-3 (r= -0.44; p=0.042). Discussion: Our results indicate impaired white matter tract integrity in elderly populations consistent with myelin damage. Impaired tract integrity in SCZ is most prominent in patients with advanced illness.

3.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260662

RESUMO

The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear at least partly due to methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, we used our most advanced resting-state functional connectivity (RSFC) based precision functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus was specific to regions of the recently discovered somato-cognitive action network (SCAN; (Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control (Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), respectively. Functional connectivity to these two networks was organized into discrete dorsal-medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, our results indicate that far from being a 'motor' structure, the red nucleus is better understood as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence and action plans.

4.
J Neurosci Methods ; 402: 110011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981126

RESUMO

BACKGROUND: Resting-state fMRI is increasingly used to study the effects of gliomas on the functional organization of the brain. A variety of preprocessing techniques and functional connectivity analyses are represented in the literature. However, there so far has been no systematic comparison of how alternative methods impact observed results. NEW METHOD: We first surveyed current literature and identified alternative analytical approaches commonly used in the field. Following, we systematically compared alternative approaches to atlas registration, parcellation scheme, and choice of graph-theoretical measure as regards differentiating glioma patients (N = 59) from age-matched reference subjects (N = 163). RESULTS: Our results suggest that non-linear, as opposed to affine registration, improves structural match to an atlas, as well as measures of functional connectivity. Functionally- as opposed to anatomically-derived parcellation schemes maximized the contrast between glioma patients and reference subjects. We also demonstrate that graph-theoretic measures strongly depend on parcellation granularity, parcellation scheme, and graph density. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: Our current work primarily focuses on technical optimization of rs-fMRI analysis in glioma patients and, therefore, is fundamentally different from the bulk of papers discussing glioma-induced functional network changes. We report that the evaluation of glioma-induced alterations in the functional connectome strongly depends on analytical approaches including atlas registration, choice of parcellation scheme, and graph-theoretical measures.


Assuntos
Conectoma , Glioma , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem
5.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077010

RESUMO

Functional MRI (fMRI) data are severely distorted by magnetic field (B0) inhomogeneities which currently must be corrected using separately acquired field map data. However, changes in the head position of a scanning participant across fMRI frames can cause changes in the B0 field, preventing accurate correction of geometric distortions. Additionally, field maps can be corrupted by movement during their acquisition, preventing distortion correction altogether. In this study, we use phase information from multi-echo (ME) fMRI data to dynamically sample distortion due to fluctuating B0 field inhomogeneity across frames by acquiring multiple echoes during a single EPI readout. Our distortion correction approach, MEDIC (Multi-Echo DIstortion Correction), accurately estimates B0 related distortions for each frame of multi-echo fMRI data. Here, we demonstrate that MEDIC's framewise distortion correction produces improved alignment to anatomy and decreases the impact of head motion on resting-state functional connectivity (RSFC) maps, in higher motion data, when compared to the prior gold standard approach (i.e., TOPUP). Enhanced framewise distortion correction with MEDIC, without the requirement for field map collection, furthers the advantage of multi-echo over single-echo fMRI.

6.
Med Sci Sports Exerc ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079309

RESUMO

PURPOSE: Fitness, physical activity, body composition, and sleep have all been proposed to explain differences in brain health. We hypothesized that an exercise intervention would result in improved fitness and body composition and would be associated with improved structural brain health. METHODS: In a randomized controlled trial we studied 485 older adults who engaged in an exercise intervention (n = 225) or a non-exercise comparison condition (n = 260). Using MRI, we estimated the physiological age of the brain (BrainAge) and derived a predicted age difference compared to chronological age (BrainPAD). Aerobic capacity, physical activity, sleep, and body composition were assessed and their impact on BrainPAD explored. RESULTS: There were no significant difference between experimental groups for any variable at any timepoint. The intervention group gained fitness, improved body composition, and increased total sleep time but did not have significant changes in BrainPAD. Analyses of changes in BrainPAD independent of group assignment indicated significant associations with changes in body fat percentage (r(479) = 0.154, p = 0.001), and visceral adipose tissue (VAT) (r(478) = 0.141, p = 0.002), but not fitness (r(406) = -0.075, p = 0.129), sleep (r(467) range -0.017 to 0.063, p range 0.171 to 0.710), or physical activity (r(471) = -0.035 p = 0.444). With linear regression, changes in body fat percentage and VAT significantly predicted changes in BrainPAD (ß = 0.948, p = 0.003) with one kg change in VAT predicting 0.948 years change in BrainPAD. CONCLUSIONS: In cognitively normal older adults, exercise did not appear to impact BrainPAD, although it was effective in improving fitness and body composition. Changes in body composition, but not fitness, physical activity, or sleep impacted BrainPAD. These findings suggest that focus on weight control, particularly reduction of central obesity, could be an interventional target to promote healthier brains.

7.
Dev Psychol ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971828

RESUMO

Behavioral inhibition (BI), an early-life temperament characterized by vigilant responses to novelty, is a risk factor for anxiety disorders. In this study, we investigated whether differences in neonatal brain responses to infrequent auditory stimuli relate to children's BI at 1 year of age. Using functional magnetic resonance imaging (fMRI), we collected blood-oxygen-level-dependent (BOLD) data from N = 45 full-term, sleeping neonates during an adapted auditory oddball paradigm and measured BI from n = 27 of these children 1 year later using an observational assessment. Whole-brain analyses corrected for multiple comparisons identified 46 neonatal brain regions producing novelty-evoked BOLD responses associated with children's BI scores at 1 year of age. More than half of these regions (n = 24, 52%) were in prefrontal cortex, falling primarily within regions of the default mode or frontoparietal networks or in ventromedial/orbitofrontal regions without network assignments. Hierarchical clustering of the regions based on their patterns of association with BI resulted in two groups with distinct anatomical, network, and response-timing profiles. The first group, located primarily in subcortical and temporal regions, tended to produce larger early oddball responses among infants with lower subsequent BI. The second group, located primarily in prefrontal cortex, produced larger early oddball responses among infants with higher subsequent BI. These results provide preliminary insights into brain regions engaged by novelty in infants that may relate to later BI. The findings may inform understanding of anxiety disorders and guide future research. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

8.
bioRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873167

RESUMO

Structural connections (SC) between distant regions of the brain support synchronized function known as functional connectivity (FC) and give rise to the large-scale brain networks that enable cognition and behavior. Understanding how SC enables FC is important to understand how injuries to structural connections may alter brain function and cognition. Previous work evaluating whole-brain SC-FC relationships showed that SC explained FC well in unimodal visual and motor areas, but only weakly in association areas, suggesting a unimodal-heteromodal gradient organization of SC-FC coupling. However, this work was conducted in group-averaged SC/FC data. Thus, it could not account for inter-individual variability in the locations of cortical areas and white matter tracts. We evaluated the correspondence of SC and FC within three highly sampled healthy participants. For each participant, we collected 78 minutes of diffusion-weighted MRI for SC and 360 minutes of resting state fMRI for FC. We found that FC was best explained by SC in visual and motor systems, as well as in anterior and posterior cingulate regions. A unimodal-to-heteromodal gradient could not fully explain SC-FC coupling. We conclude that the SC-FC coupling of the anterior-posterior cingulate circuit is more similar to unimodal areas than to heteromodal areas. SIGNIFICANCE STATEMENT: Structural connections between distant regions of the human brain support networked function that enables cognition and behavior. Improving our understanding of how structure enables function could allow better insight into how brain disconnection injuries impair brain function.Previous work using neuroimaging suggested that structure-function relationships vary systematically across the brain, with structure better explaining function in basic visual/motor areas than in higher-order areas. However, this work was conducted in group-averaged data, which may obscure details of individual-specific structure-function relationships.Using individual-specific densely sampled neuroimaging data, we found that in addition to visual/motor regions, structure strongly predicts function in specific circuits of the higher-order cingulate gyrus. The cingulate's structure-function relationship suggests that its organization may be unique among higher-order cortical regions.

9.
Int J Part Ther ; 10(1): 32-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37823016

RESUMO

Purpose: Pediatric brain tumor patients often experience significant cognitive sequelae. Resting-state functional MRI (rsfMRI) provides a measure of brain network organization, and we hypothesize that pediatric brain tumor patients treated with proton therapy will demonstrate abnormal brain network architecture related to cognitive outcome and radiation dosimetry. Participants and Methods: Pediatric brain tumor patients treated with proton therapy were enrolled on a prospective study of cognitive assessment using the NIH Toolbox Cognitive Domain. rsfMRI was obtained in participants able to complete unsedated MRI. Brain system segregation (BSS), a measure of brain network architecture, was calculated for the whole brain, the high-level cognition association systems, and the sensory-motor systems. Results: Twenty-six participants were enrolled in the study for cognitive assessment, and 18 completed rsfMRI. There were baseline cognitive deficits in attention and inhibition and processing speed prior to radiation with worsening performance over time in multiple domains. Average BSS across the whole brain was significantly decreased in participants compared with healthy controls (1.089 and 1.101, respectively; P = 0.001). Average segregation of association systems was significantly lower in participants than in controls (P < 0.001) while there was no difference in the sensory motor networks (P = 0.70). Right hippocampus dose was associated with worse attention and inhibition (P < 0.05) and decreased segregation in the dorsal attention network (P < 0.05). Conclusion: Higher mean dose to the right hippocampus correlated with worse dorsal attention network segregation and worse attention and inhibition cognitive performance. Patients demonstrated alterations in brain network organization of association systems measured with rsfMRI; however, somatosensory system segregation was no different from healthy children. Further work with preradiation rsfMRI is needed to assess the effects of surgery and presence of a tumor on brain network architecture.

10.
J Neurooncol ; 164(2): 309-320, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37668941

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common and aggressive malignant glioma, with an overall median survival of less than two years. The ability to predict survival before treatment in GBM patients would lead to improved disease management, clinical trial enrollment, and patient care. METHODS: GBM patients (N = 133, mean age 60.8 years, median survival 14.1 months, 57.9% male) were retrospectively recruited from the neurosurgery brain tumor service at Washington University Medical Center. All patients completed structural neuroimaging and resting state functional MRI (RS-fMRI) before surgery. Demographics, measures of cortical thickness (CT), and resting state functional network connectivity (FC) were used to train a deep neural network to classify patients based on survival (< 1y, 1-2y, >2y). Permutation feature importance identified the strongest predictors of survival based on the trained models. RESULTS: The models achieved a combined cross-validation and hold out accuracy of 90.6% in classifying survival (< 1y, 1-2y, >2y). The strongest demographic predictors were age at diagnosis and sex. The strongest CT predictors of survival included the superior temporal sulcus, parahippocampal gyrus, pericalcarine, pars triangularis, and middle temporal regions. The strongest FC features primarily involved dorsal and inferior somatomotor, visual, and cingulo-opercular networks. CONCLUSION: We demonstrate that machine learning can accurately classify survival in GBM patients based on multimodal neuroimaging before any surgical or medical intervention. These results were achieved without information regarding presentation symptoms, treatments, postsurgical outcomes, or tumor genomic information. Our results suggest GBMs have a global effect on the brain's structural and functional organization, which is predictive of survival.


Assuntos
Glioblastoma , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Aprendizado de Máquina
11.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662189

RESUMO

Environmental influences on brain structure and function during early development have been well-characterized. In pre-registered analyses, we test the theory that socioeconomic status (SES) is associated with differences in trajectories of intrinsic brain network development from birth to three years (n = 261). Prenatal SES is associated with developmental increases in cortical network segregation, with neonates and toddlers from lower-SES backgrounds showing a steeper increase in cortical network segregation with age, consistent with accelerated network development. Associations between SES and cortical network segregation occur at the local scale and conform to a sensorimotor-association hierarchy of cortical organization. SES-associated differences in cortical network segregation are associated with language abilities at two years, such that lower segregation is associated with improved language abilities. These results yield key insight into the timing and directionality of associations between the early environment and trajectories of cortical development.

12.
Brain Imaging Behav ; 17(6): 689-701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37695507

RESUMO

Survivors of pediatric brain tumors experience significant cognitive deficits from their diagnosis and treatment. The exact mechanisms of cognitive injury are poorly understood, and validated predictors of long-term cognitive outcome are lacking. Resting state functional magnetic resonance imaging allows for the study of the spontaneous fluctuations in bulk neural activity, providing insight into brain organization and function. Here, we evaluated cognitive performance and functional network architecture in pediatric brain tumor patients. Forty-nine patients (7-18 years old) with a primary brain tumor diagnosis underwent resting state imaging during regularly scheduled clinical visits. All patients were tested with a battery of cognitive assessments. Extant data from 139 typically developing children were used as controls. We found that obtaining high-quality imaging data during routine clinical scanning was feasible. Functional network organization was significantly altered in patients, with the largest disruptions observed in patients who received propofol sedation. Awake patients demonstrated significant decreases in association network segregation compared to controls. Interestingly, there was no difference in the segregation of sensorimotor networks. With a median follow-up of 3.1 years, patients demonstrated cognitive deficits in multiple domains of executive function. Finally, there was a weak correlation between decreased default mode network segregation and poor picture vocabulary score. Future work with longer follow-up, longitudinal analyses, and a larger cohort will provide further insight into this potential predictor.


Assuntos
Neoplasias Encefálicas , Transtornos Cognitivos , Criança , Humanos , Adolescente , Imageamento por Ressonância Magnética/métodos , Encéfalo , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Mapeamento Encefálico/métodos , Cognição , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Rede Nervosa/diagnóstico por imagem
13.
bioRxiv ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37645835

RESUMO

The circulation of cerebrospinal fluid (CSF) is essential for maintaining brain homeostasis and clearance, and impairments in its flow can lead to various brain disorders. Recent studies have shown that CSF circulation can be interrogated using low b-value diffusion magnetic resonance imaging (low-b dMRI). Nevertheless, the spatial organization of intracranial CSF flow dynamics remains largely elusive. Here, we developed a whole-brain voxel-based analysis framework, termed CSF pseudo-diffusion spatial statistics (CΨSS), to examine CSF mean pseudo-diffusivity (MΨ), a measure of CSF flow magnitude derived from low-b dMRI. We showed that intracranial CSF MΨ demonstrates characteristic covariance patterns by employing seed-based correlation analysis. Importantly, we applied non-negative matrix factorization analysis to further elucidate the covariance patterns of CSF MΨ in a hypothesis-free, data-driven way. We identified distinct CSF spaces that consistently displayed unique pseudo-diffusion characteristics across multiple imaging datasets. Our study revealed that age, sex, brain atrophy, ventricular anatomy, and cerebral perfusion differentially influence MΨ across these CSF spaces. Notably, individuals with anomalous CSF flow patterns displayed incidental findings on multimodal neuroradiological examinations. Our work sets forth a new paradigm to study CSF flow, with potential applications in clinical settings.

14.
Neuroimage Clin ; 39: 103476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37453204

RESUMO

Glioblastoma, a highly aggressive form of brain tumor, is a brain-wide disease. We evaluated the impact of tumor burden on whole brain resting-state functional magnetic resonance imaging (rs-fMRI) activity. Specifically, we analyzed rs-fMRI signals in the temporal frequency domain in terms of the power-law exponent and fractional amplitude of low-frequency fluctuations (fALFF). We contrasted 189 patients with newly-diagnosed glioblastoma versus 189 age-matched healthy reference participants from an external dataset. The patient and reference datasets were matched for age and head motion. The principal finding was markedly flatter spectra and reduced grey matter fALFF in the patients as compared to the reference dataset. We posit that the whole-brain spectral change is attributable to global dysregulation of excitatory and inhibitory balance and metabolic demand in the tumor-bearing brain. Additionally, we observed that clinical comorbidities, in particular, seizures, and MGMT promoter methylation, were associated with flatter spectra. Notably, the degree of change in spectra was predictive of overall survival. Our findings suggest that frequency domain analysis of rs-fMRI activity provides prognostic information in glioblastoma patients and offers a means of noninvasively studying the effects of glioblastoma on the whole brain.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico/métodos , Neoplasias Encefálicas/patologia
15.
Neurooncol Adv ; 5(1): vdad034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152811

RESUMO

Background: Patients with glioblastoma (GBM) and high-grade glioma (HGG, World Health Organization [WHO] grade IV glioma) have a poor prognosis. Consequently, there is an unmet clinical need for accessible and noninvasively acquired predictive biomarkers of overall survival in patients. This study evaluated morphological changes in the brain separated from the tumor invasion site (ie, contralateral hemisphere). Specifically, we examined the prognostic value of widespread alterations of cortical thickness (CT) in GBM/HGG patients. Methods: We used FreeSurfer, applied with high-resolution T1-weighted MRI, to examine CT, evaluated prior to standard treatment with surgery and chemoradiation in patients (GBM/HGG, N = 162, mean age 61.3 years) and 127 healthy controls (HC; 61.9 years mean age). We then compared CT in patients to HC and studied patients' associated changes in CT as a potential biomarker of overall survival. Results: Compared to HC cases, patients had thinner gray matter in the contralesional hemisphere at the time of tumor diagnosis. patients had significant cortical thinning in parietal, temporal, and occipital lobes. Fourteen cortical parcels showed reduced CT, whereas in 5, it was thicker in patients' cases. Notably, CT in the contralesional hemisphere, various lobes, and parcels was predictive of overall survival. A machine learning classification algorithm showed that CT could differentiate short- and long-term survival patients with an accuracy of 83.3%. Conclusions: These findings identify previously unnoticed structural changes in the cortex located in the hemisphere contralateral to the primary tumor mass. Observed changes in CT may have prognostic value, which could influence care and treatment planning for individual patients.

16.
Neurotoxicology ; 97: 25-33, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37127223

RESUMO

OBJECTIVE: To evaluate in-vivo neuroinflammation and white matter (WM) microstructural integrity in occupational manganese (Mn) exposure. METHODS: We assessed brain inflammation using Diffusion Basis Spectrum Imaging (DBSI) in 26 Mn-exposed welders, 17 Mn-exposed workers, and 26 non-exposed participants. Cumulative Mn exposure was estimated from work histories and the Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3) scores were completed by a movement specialist. Tract-based Spatial Statistics allowed for whole-brain voxel-wise WM analyses to compare WM DBSI-derived measures between the Mn-exposed and non-exposed groups. Exploratory grey matter region of interest (ROI) analyses examined the presence of similar alterations in the basal ganglia. We used voxelwise general linear modeling and linear regression to evaluate the association between cumulative Mn exposure, WM or basal ganglia DBSI metrics, and UPDRS3 scores, while adjusting for age. RESULTS: Mn-exposed welders had higher DBSI-derived restricted fraction (DBSI-RF), higher DBSI-derived nonrestricted fraction (DBSI-NRF), and lower DBSI-derived fiber fraction (DBSI-FF) in multiple WM tracts (all p < 0.05) in comparison to less-exposed workers and non-exposed participants. Basal ganglia ROI analyses revealed higher average caudate DBSI-NRF and DBSI-derived radial diffusion (DBSI-RD) values in Mn-exposed welders relative to non-exposed participants (p < 0.05). Caudate DBSI-NRF was also associated with greater cumulative Mn exposure and higher UPRDS3 scores. CONCLUSIONS: Mn-exposed welders demonstrate greater DBSI-derived indicators of neuroinflammation-related cellularity (DBSI-RF), greater extracellular edema (DBSI-NRF), and lower apparent axonal density (DBSI-FF) in multiple WM tracts suggesting a neuroinflammatory component in the pathophysiology of Mn neurotoxicity. Caudate DBSI-NRF was positively associated with both cumulative Mn exposure and clinical parkinsonism, indicating a possible dose-dependent effect on extracellular edema with associated motor effects.


Assuntos
Exposição Ocupacional , Soldagem , Substância Branca , Humanos , Manganês/toxicidade , Substância Branca/diagnóstico por imagem , Doenças Neuroinflamatórias , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Edema
17.
Cereb Cortex Commun ; 4(2): tgad007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207193

RESUMO

Neuroinflammation is both a consequence and driver of overfeeding and weight gain in rodent obesity models. Advances in magnetic resonance imaging (MRI) enable investigations of brain microstructure that suggests neuroinflammation in human obesity. To assess the convergent validity across MRI techniques and extend previous findings, we used diffusion basis spectrum imaging (DBSI) to characterize obesity-associated alterations in brain microstructure in 601 children (age 9-11 years) from the Adolescent Brain Cognitive DevelopmentSM Study. Compared with children with normal-weight, greater DBSI restricted fraction (RF), reflecting neuroinflammation-related cellularity, was seen in widespread white matter in children with overweight and obesity. Greater DBSI-RF in hypothalamus, caudate nucleus, putamen, and, in particular, nucleus accumbens, correlated with higher baseline body mass index and related anthropometrics. Comparable findings were seen in the striatum with a previously reported restriction spectrum imaging (RSI) model. Gain in waist circumference over 1 and 2 years related, at nominal significance, to greater baseline RSI-assessed restricted diffusion in nucleus accumbens and caudate nucleus, and DBSI-RF in hypothalamus, respectively. Here we demonstrate that childhood obesity is associated with microstructural alterations in white matter, hypothalamus, and striatum. Our results also support the reproducibility, across MRI methods, of findings of obesity-related putative neuroinflammation in children.

18.
Nature ; 617(7960): 351-359, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37076628

RESUMO

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Assuntos
Mapeamento Encefálico , Cognição , Córtex Motor , Mapeamento Encefálico/métodos , Mãos/fisiologia , Imageamento por Ressonância Magnética , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Humanos , Recém-Nascido , Lactente , Criança , Animais , Macaca/anatomia & histologia , Macaca/fisiologia , Pé/fisiologia , Boca/fisiologia , Conjuntos de Dados como Assunto
19.
J Neurosurg ; 139(5): 1258-1269, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37060318

RESUMO

OBJECTIVE: Resting-state functional MRI (RS-fMRI) enables the mapping of function within the brain and is emerging as an efficient tool for the presurgical evaluation of eloquent cortex. Models capable of reliable and precise mapping of resting-state networks (RSNs) with a reduced scanning time would lead to improved patient comfort while reducing the cost per scan. The aims of the present study were to develop a deep 3D convolutional neural network (3DCNN) capable of voxel-wise mapping of language (LAN) and motor (MOT) RSNs with minimal quantities of RS-fMRI data. METHODS: Imaging data were gathered from multiple ongoing studies at Washington University School of Medicine and other thoroughly characterized, publicly available data sets. All study participants (n = 2252 healthy adults) were cognitively screened and completed structural neuroimaging and RS-fMRI. Random permutations of RS-fMRI regions of interest were used to train a 3DCNN. After training, model inferences were compared using varying amounts of RS-fMRI data from the control data set as well as 5 patients with glioblastoma multiforme. RESULTS: The trained model achieved 96% out-of-sample validation accuracy on data encompassing a large age range collected on multiple scanner types and varying sequence parameters. Testing on out-of-sample control data showed 97.9% similarity between results generated using either 50 or 200 RS-fMRI time points, corresponding to approximately 2.5 and 10 minutes, respectively (96.9% LAN, 96.3% MOT true-positive rate). In evaluating data from patients with brain tumors, the 3DCNN was able to accurately map LAN and MOT networks despite structural and functional alterations. CONCLUSIONS: Functional maps produced by the 3DCNN can inform surgical planning in patients with brain tumors in a time-efficient manner. The authors present a highly efficient method for presurgical functional mapping and thus improved functional preservation in patients with brain tumors.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Descanso
20.
J Neurol Sci ; 448: 120616, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989588

RESUMO

BACKGROUND: Cerebral small vessel disease (CSVD) as measured by cortical atrophy and white matter hyperintensities [leukoaraiosis], captured via magnetic resonance imaging (MRI) are increasing in prevalence due to the growth of the aging population and an increase in cardiovascular risk factors in the population. CSVD impacts cognitive function and mobility, but it is unclear if it affects complex, functional activities like driving. METHODS: In a cohort of 163 cognitively normal, community-dwelling older adults (age ≥ 65), we compared naturalistic driving behavior with mild/moderate leukoaraiosis, cortical atrophy, or their combined rating in a clinical composite termed, aging-related changes to those without any, over a two-and-a-half-year period. RESULTS: Older drivers with mild or moderate cortical atrophy and aging-related changes (composite) experienced a greater decrease in the number of monthly trips which was due to a decrease in the number of trips made within a one-to-five-mile diameter from their residence. Older drivers with CSVD experience a larger reduction in daily driving behaviors than drivers without CSVD, which may serve as an early neurobehavioral marker for functional decline. CONCLUSIONS: As CSVD markers, leukoaraiosis and cortical atrophy are standard MRI metrics that are widely available and can be used for screening individuals at higher risk for driving safety risk and decline in community mobility.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Leucoaraiose , Substância Branca , Humanos , Idoso , Leucoaraiose/diagnóstico por imagem , Leucoaraiose/complicações , Cognição , Imageamento por Ressonância Magnética/métodos , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Atrofia/patologia , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...